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1. Introduction

Even if we know that supersymmetry is not realized in our vacuum, it might well be

spontaneously broken at energy scales well below the Planck scale. It seems a good idea,

then, to understand the structure of the supersymmetric vacua of supergravity, as a first

step before implementing spontaneous supersymmetry breaking.

It might seem that there are already, if anything, too many supersymmetric vacua

in string theory. The vast majority of those considered so far are, however, based on

Calabi-Yau manifolds; among flux vacua, most are special cases of the same type of con-

struction [1 – 3]. One of the possible dangers of this lack of “genetic diversity” is that

one might draw unjustified conclusions about what type of theories string theory can and

cannot realize at low energies. From other side, learning more about the general prop-

erties of geometric flux compactifications will likely teach us more about the dynamical

properties of string theory, or at least provide a more diversified testing ground. Last but

not least, going beyond Calabi-Yau manifolds is necessary to apply AdS/CFT to many

theories [4 – 6].
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N = 1 supersymmetry has been reformulated as a geometrical condition in [7]. It is

equivalent, namely, to equations (2.1), (2.2) below. The first in (2.1), in particular, had

been studied already in [8, 9]: it defines what is called a generalized complex manifold

(with holomorphically trivial canonical bundle1).

The differential forms Φ1,2, given the algebraic constraints that they have to satisfy

(reviewed in Appendix A), determine a metric g. This metric does not appear explicitly,

because (2.1), (2.2) are written purely in terms of exterior calculus, which is indeed one of

their attractive features. There is one place, though, where g appears explicitly, and it is

the Hodge ∗ in (2.2). It might naively seem that one can eliminate this ∗ by redefining F ,

but this would make it reappear in the Bianchi identity (2.4).

In section 2, we will show that we can eliminate the Hodge ∗ by reformulating the first

equation in (2.2) as

F = −8i (∂̄J1
H − ∂J1

H )(e−3AImΦ2) (1.1)

where ∂J1
H is a generalization of the Dolbeault operator, associated in an algebraic way to

Φ1 and to the NS three-form H. For example, when Φ1 is a holomorphic three-form Ω and

H = 0, ∂J1
H is the usual Dolbeault operator ∂.

The point of (1.1) is that, while ∗ depends on the full metric, and hence on both Φ1,2,

the generalized Dolbeault depends only on Φ1 and not on Φ2. Hence, while (2.2) was highly

nonlinear, (1.1) is linear in both Φ1,2.

One consequence of this is that the moduli problem for (1.1) becomes easier. It is well-

known that the moduli space of Calabi-Yau compactifications without flux has a dimension

determined by cohomology groups of the Calabi-Yau. Once fluxes are introduced as in [1 –

3], one can lift all of them but the overall volume (that in turn one can then fix by quantum

effects [10]). The equations for N = 1 supersymmetry that we have just reviewed seem to

have no particular preference for Calabi-Yau manifolds. The explicit study in [11] seems

to indicate that more general types of vacua are at least as abundant.

It would be interesting, then, to see if in the general case the moduli are given by

some kind of generalized cohomology. Even if the non–Calabi-Yau examples are still few,

knowing the answer to such a question would tell us what manifolds are more promising

(which ones, for examples, have already classically few or no moduli) before we even try

to show the existence of a vacuum on them.

We attack the moduli problem (using (1.1)) in section 3. We do not solve it in full

generality, but we give a kind of cohomological description (in (3.17) below) for a subset of

moduli, those coming from deformations of Φ2. We propose some speculation for the Φ1

moduli in section 3.5. Notice that, were it for the first equation in (2.1) alone, there would

exist already a cohomological description for moduli, that we review from several different

angles in section 3.4. (1.1) is also likely to be a step forward towards finding an existence

theorem for supersymmetric vacua; we make this case in section 4.

1This is actually called generalized Calabi-Yau in [8]; but this name has become confusing after a

similar-sounding definition in [9], and especially after the somehow stronger definition of generalized Kähler

manifolds there.
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2. Supersymmetry and the d
J operator

In this section, we will reformulate the conditions for N = 1 supersymmetry obtained

in [7]. If the spacetime is taken to be Minkowski, the supersymmetry equations read2

dHΦ1 = 0 , dH(e−AReΦ2) = 0 , (2.1)

dH(eAImΦ2) =
e4A

8
∗ λ(F ) , ||Φ1|| = ||Φ2|| =

e3A−φ

√
8

(2.2)

Here, λ is just some flipping of signs defined in (A.2); the norm || · || is defined3 in (A.1).

dH = d − H∧ is a differential, in that it squares to zero (due to dH = 0). F is the

internal flux, which via self-duality determines the whole ten-dimensional flux: F (10) =

F + vol4 ∧ λ(∗F ). A is the warping, defined by g10 = e2Ag4 + g6. Φ1,2 are two differential

forms (of mixed degree) that define an SU(3) × SU(3) structure on T ⊕ T ∗: namely, they

are compatible pure spinors.4 They have different parity in IIA and IIB:

IIA :
Φ1 = Φ+

Φ2 = Φ−
IIB :

Φ1 = Φ−

Φ2 = Φ+

(2.3)

Notice that in (2.1) the dilaton is decoupled from the other fields. One can solve the system

with ||Φ1|| = ||Φ2||, and then, at the very end, extract the dilaton from in (2.2).

By their algebraic characterization, Φ± define a metric g and a B field. Since the

equations are written in terms of wedge products and exterior differential of forms, the

metric does not appear explicitly but through Φ± — and also, crucially, through the Hodge

∗ operator.

For many applications, the appearance of this ∗ is annoying because F is constrained

by the Bianchi identity:

dHF = δ (2.4)

where δ is a magnetic source determined by the orientifolds and branes on the manifold.

Putting together (2.4) and (2.2) one gets a second-order equation containing a Laplacian.

Even worse, the metric in the definition of this Laplacian is related to the form the Laplacian

is acting on. (We will see this more explicitly in section 4.) Notice that an electric RR

source is instead forbidden: dH(e4A ∗λ(F )) = 0 follows from (2.2). An NSNS source is also

forbidden, since

d(e4A−2φ ∗ H) = −e4A
∑

k

∗Fk+2 ∧ Fk (2.5)

is implied by the supersymmetry equations5 [14, 15].

After a review of some algebraic facts in subsection 2.1, we will show in subsection 2.2

how to get rid of the ∗ in (2.2).

2Notice the different normalization of ||Φ1,2|| with respect to [7]; also, the conventions for the RR flux

in IIA have been harmonized with the ones in IIB, as in [12, 7].
3The equal norm condition ||Φ1|| = ||Φ2|| is actually, in general, an assumption; it is automatically

satisfied in the compact case (because of the presence of an orientifold), and whenever the solution admits

supersymmetric probe branes [13].
4Some aspects of generalized complex geometry are reviewed in appendix A.
5This was shown after the first version of this paper.
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2.1 The action of J
Recall that one can associate to a pure spinor Φ a generalized almost complex structure

J . This is a matrix in End(T ⊕ T ∗) such that

J 2 = −1 , IJ = −J tI , (2.6)

where I =
(

0 1
1 0

)

is the natural metric on T ⊕ T ∗.

In dimension 6, the fibre of T ⊕T ∗ has dimension 12: a basis is given by the vectors ∂m

and the one-forms dxm. They act naturally on the bundle of differential forms Λ∗T ∗, re-

spectively by contraction, ι∂m
, and by wedge, dxm∧. Let us denote their action collectively

by ΓA, A = 1 . . . 12.

Given a matrix qA
B in End(T ⊕ T ∗) in the Lie algebra o(6, 6) (namely, one that

preserves the metric I the way J does in (2.6)), one can determine a natural action q· on

the bundle of differential forms Λ∗T ∗ via a Bogolubov-type computation:

eq·ΓAe−q· = [exp(q)]ABΓB , q· =
1

2
qABΓAB (2.7)

where we have used the metric I to lower one index: qAB = IACqC
B. Notice that qAB is

antisymmetric precisely because qA
B is in o(6, 6).

We can now apply this to q = J . We obtain the action J · ≡ 1
2JABΓAB [16] on the

bundle of forms. Explicitly:

J · =
1

2

(

Jmndxm ∧ dxn ∧ +2Im
n[dxn∧, ι∂n

] + Pmnι∂m
ι∂n

)

,

(

I P

J −It

)

≡ J . (2.8)

Let us see what this action is like in the two most popular examples of J . The first is

one induced by a complex structure I through J =
( I 0
0 −It

)

. In this case, the action is just

Im
n(dxn∧)ι∂m

, which gives i(p − q) on a (p, q) form. The second case is J =
( 0 −J−1

J 0

)

,

with J a symplectic two-form. In this case J · = J ∧ −J−1
x. Note that J−1 is really

just defined as the inverse of J , and without any metric. In fact, this is a general feature

of (2.8): nothing in J · requires the metric for its definition, since dxm∧ are only needed

with their index up, and ι∂n
with their index down.

One nice property of this action is that its eigenforms are known. Recall that the

correspondence between Φ and J gives that the annihilator LΦ of Φ is the i-eigenvalue of

J . Then the conjugate L̄Φ consists of creators, and by acting with its elements one obtains

a basis for the bundle of differential forms. If one defines U3
J to be generated by Φ, let

U3−k
J to be obtained by the action of k elements of L̄Φ on Φ.

It is then easy to see [16] that J · Uk
J = kiUk

J . One first computes [J ·, lAΓA] =

J A
B lBΓA. Hence, for any l ∈ LΦ,

0 = J · l · Φ = [J ·, l·]Φ + l · J · Φ = l · J · Φ .

Since two forms with the same annihilator are proportional, J · Φ = αΦ for some α. In a

similar way, one sees that elements of LΦ raise the eigenvalue of J · by i, and elements of

– 4 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
0

L̄Φ lower it by −i. Since U−3 is obtained by acting on Φ with all six creators, it is generated

by the conjugate Clifford vacuum Φ̄; hence J · Φ̄ = (α− 6i)Φ̄. J · is an antisymmetric real

matrix (due to ΓAB) as an operator on differential forms, and hence can only have purely

imaginary eigenvalues; it follows that α = 3i, and then the result we wanted:

J · Uk
J = k iUk

J . (2.9)

Given two compatible pure spinors Φ±, because of (A.3) one can decompose the bundle

of differential forms in subbundles that are simultaneous eigenspaces for the actions of both

J±.

We can arrange this decomposition for the forms in a Hodge-like diamond [17, 18]. This

basis is described explicitly using the relation between differential forms and bispinors in

(A.20) of [11]. One can use that bispinor picture to compute the action of ∗λ on that

diamond by using

∗λ(C) = iγ C (2.10)

in which we have identified, for notational simplicity, differential forms and bispinors. We

summarize the results for the eigenvalues of all these operators here:

(J+· ,J−·) :
(3i, 0)

(2i, i) (2i,−i)

(i, 2i) (i, 0) (i,−2i)

(0, 3i) (0, i) (0,−i) (0,−3i)

(−i, 2i) (−i, 0) (−i,−2i)

(−2i, i) (−2i,−i)

(−3i, 0)

∗λ :
i

i − i

i − i i

i − i i − i

−i i − i

i − i

−i
.

(2.11)

One should stress that this is not the usual Hodge diamond: the forms in each entry do

not have definite (p, q)-degree. For example, the entry at the very top is not 1 but Φ+.

2.2 New supersymmetry equation

We are now ready to get rid of the ∗ in (2.2). We will present the explicit computation in

the type IIB case. The IIA case works essentially in the same way; we will give the result

for it at the end of this subsection.

First of all, we expand the RR flux F =
∑

p,q Fpq in the Hodge basis described in the

previous subsection. As shown in [7], (2.1), (2.2) imply F30 = F03 = 0. Then, using (2.11),

we have

∗λ(F ) = −J− · F + 2 ∗ λ(F10 + F01 + F32 + F23) . (2.12)

One can now use again (2.1), (2.2) to show that

i

8
e3A ∗ λ(F10 + F01) = dA ∧ Φ+ ,

i

8
e3A ∗ λ(F32 + F23) = −dA ∧ Φ̄+ . (2.13)
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Using (2.12) and (2.13), after some manipulations one gets

F = −8d
J−

H (e−3AImΦ+) , (2.14)

where we have defined the operator

dJH ≡ [dH ,J ·] . (2.15)

This is a generalization of the dc = i(∂̄ − ∂) operator in complex geometry, where ∂ is

the Dolbeault operator. We will see this in more detail in section 3.3; see formula (3.18).

Although we will set H = 0 in that section, there is no problem in generalizing that

discussion to H 6= 0, and in defining a twisted generalized Dolbeault operator so that

dJH = i(∂̄J
H − ∂J

H ) . (2.16)

The computation in type IIA can be obtained by exchanging Φ+ ↔ Φ− and by sub-

stituting in the above Fi,j ↔ F3−i,j . In the notation of (2.3), we have

F = −8dJ1
H (e−3AImΦ2) , dJ1

H ≡ [dH ,J1·] (2.17)

for both theories. One can rewrite it using (2.16) so that it looks like (1.1). It also follows

from (2.4) that

δ = −8dHdJ1
H (e−3AImΦ2) (2.18)

This is the result we were looking for: the Hodge star has been eliminated in favor of an

action J ·. As we noticed in the previous subsection, this action does not require the metric

for its definition. Both J · and (2.15) appear naturally in generalized complex geometry,

as we will discuss in section 3. In the particular case of O5 solutions, such a phenomenon

was noticed in [7] (compare eq. (5.4) there with (2.18) here). In that case, ddJ1 reduces to

the ordinary ∂∂̄; the equations become essentially the S-dual of the equations for N = 1

with NS flux only in type II, that differ from the system found in [19] only because of the

different source equation.

2.3 The AdS4 case

Before we move on, let me comment on the AdS4 generalization of (2.14). First of all, the

analogue of (2.1), (2.2) read

dHΦ1 = −2µ e−AReΦ2

(

µ ≡
√

−Λ

3

)

, (2.19)

dH(eAImΦ2) = −3µ ImΦ1 +
e4A

8
∗ λ(F ), ||Φ1|| = ||Φ2|| =

e3A−φ

√
8

(2.20)

where Λ is the cosmological constant of AdS4. Notice that an equation for ReΦ2 would

also be present, but it is now implied by the equation for Φ1.

As in the Minkowski case, we would like to reformulate the equation for ImΦ2 in such

a way as to not contain ∗ anymore. In this case, it is more convenient to follow a procedure

– 6 –
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slightly different from the one outlined in the previous subsection, for reasons that will be

clear shortly. Looking back at (2.11), we can see that6

∗λ = −e
π
2
(J1+J2)· , (2.21)

a formula that one could also check using the bispinor formalism explained for example

in [11], by noticing that ordinary gamma matrices acting from the left anticommute with

∗λ and those acting from the right commute with it. One can now write ∗λF = −e
π
2
J−·F +

2i(F10 −F01 + F32 −F23), similarly to (2.12). With a few manipulations one gets (for IIB)

−1

8
F = d

J−

H (e−3AImΦ+) + 3e−4Aµ ReΦ−. (2.22)

d
J−

H is now defined by (A.7) below. As shown in appendix A, in the Minkowski case

this definition is equivalent to (2.15). (In the previous subsection we chose to avoid the

complicated-looking e
π
2
J−·.) In the AdS case, however, since J− is not integrable, (A.7)

and (2.15) are not equivalent; the first operator squares to zero, the second does not.

3. Moduli

In this section we will apply our reformulation of the supersymmetry equation to the

problem of counting moduli of a supersymmetric solution. We will do so in the case

H = 0, for simplicity.

We summarize here the system of equations whose moduli problem we want to solve:

dΦ1 = 0 , d(e−AReΦ2) = 0 , (3.1)

δ = −8ddJ1(e−3AImΦ2) , ||Φ1|| = ||Φ2|| , (3.2)

where again Φ1,2 are compatible pure spinors, reviewed in section A. δ will be taken to

be fixed for all of this section, but for a quick comment at the end of section 3.6 (see

footnote 14). In the compact case, the source δ will include an orientifold plane; then

it is necessary to add the condition that the pure spinors transform appropriately under

the orientifold action σ. For example, for an O5 solution we have σO5(Φ+) = λ(Φ̄+) and

σO5(Φ−) = −λ(Φ−). The complete list is found in [20, Table 4.2]. We will ignore these

restrictions for most of this section, and comment on them in section 3.6.

Notice also that the dilaton is determined via ||Φ1|| = e3A−φ√
8

; hence it is irrelevant for

the moduli problem, since it is determined by the geometrical data and by the warping A.

So we have in (3.1) the supersymmetry equations and the relevant Bianchi identities.

This is all we need to satisfy to have a supersymmetric vacuum.

Let us start by some general remarks about the structure of the system (3.1). The

first thing to notice is that Φ+ and Φ− are coupled through the third equation, δ =

−8ddJ1(e−3AImΦ2), through their compatibility condition, (A.3) (or (A.4)) and through

the equal norm condition (last in (3.1)).

6This formula was first pointed out to me by M. Gualtieri.
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Let us compare this to the deformation problem for Calabi-Yau manifolds. The forms J

and Ω are still coupled by compatibility and equal norm (which in this case read J ∧Ω = 0

and iΩΩ̄ = 4
3J3); but the differential conditions, dJ = 0 = dΩ, are decoupled. As we

know, it turns out that the algebraic compatibility conditions are not so important. The

deformation δΩ contains representations 6, 3̄ and 1 of SU(3); the deformation δJ contains

representations 3, 8 and 1. The compatibility conditions relate the two 3’s (which then

disappear given that H(1,0) = 0) and the two 1’s. As a result, it is possible to express the

deformation problem purely in terms of cohomology.

This example should make us confident that the algebraic conditions are not dangerous,

but also tells us that the appearance of both pure spinors in the differential equation

δ = −8ddJ1(e−3AImΦ2) leads us to uncharted territory.

3.1 Real and imaginary part of a pure spinor

Before we go into that, we will review a few algebraic facts about pure spinors that we will

later need to apply to both Φ1 and Φ2.

The fact that we will mainly need is that a pure spinor Φ is determined by its real

part. If we define ρ ≡ ReΦ and ρ̂ = ImΦ, from (2.9) we have

ρ̂ = −1

3
J · ρ (3.3)

where J can also be defined by ρ via [8]

JAB =
QAB

√

−TrQ2/12
, QAB = (ρ,ΓABρ) . (3.4)

Conversely, one can ask when a real three-form ρ can be the real part of a pure spinor,

ρ = ReΦ . (3.5)

This is a (pointwise) purely algebraic problem, and it can be shown that it can be solved

exactly [8, 21] when TrQ2 < 0 (as should be the case for JAB to be a generalized complex

structure, since it should square to −1).7 If that condition is met (ρ is then called stable),

then the imaginary part is determined by (3.3) and (3.4). Let us denote ImΦ determined

in this way from ρ = ReΦ by ρ̂, so that

Φ = ρ + iρ̂ . (3.6)

The norm (Φ, Φ̄) = −2i(ρ, ρ̂) of the pure spinor so determined is also proportional to√
Q2:

s(ρ) ≡
√

−TrQ2

12
=

1

12

QABQAB

s
=

1

6s
(ρ,Q · ρ) = −1

2
(ρ, ρ̂) (3.7)

where we have used (3.3) and (3.4) again. For us, the main use of this identity is that it is

now easy to vary the norm of Φ:

δ(ρ, ρ̂) = 2(δρ, ρ̂) . (3.8)

7This was given a physical interpretation in terms of black hole entropy in [22].
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It is also possible to use this to show that [8]

δρ̂ = JHitδρ (3.9)

where JHit is a complex structure associated to Φ (and hence to ρ) defined by

JHitω =
−iω if ω ∈ U3

J , U1
J

iω if ω ∈ U−3
J , U−1

J
. (3.10)

Using (2.9), one can relate JHit to the action J ·:

JHitω = −J · ω − 2
Re((ω, Φ̄)Φ)

(ρ, ρ̂)
= −J · ω − 2

(ω, ρ)

(ρ, ρ̂)
ρ − 2

(ω, ρ̂)

(ρ, ρ̂)
ρ̂ . (3.11)

3.2 Non-integrable moduli

In this subsection, we will fix Φ1 and consider deformations of Φ2; we call these “non

integrable” because Φ2 (as opposed to Φ1) is not closed, and hence the corresponding

generalized complex structure J2 is not integrable (as we will review in detail in section 3.4,

for example around (3.22)).

For this particular subset of deformations, let us now write the deformation equations

in terms of ρ2 = e−AReΦ2, ρ̂2 = e−AImΦ2 and their variations:

d(δρ2) = 0 , ddJ1δ(e−2Aρ̂2) = 0 , δ(e2A(ρ2, ρ̂2)) = 0 , J1 · δρ2 = 0 ; (3.12)

the first three equations come from and the last comes from (A.4). Notice that the stability

condition guaranteeing that ρ can be the real part of a pure spinor is open; hence (3.12) is

all we need — δρ2 is an arbitrary form, we need not specify any purity. Let us also recall

that ρ̂2 is a function of ρ2 given by (3.3) and (3.4).

From the third equation in (3.12) we get, using (3.8), that

δA = −(δρ2, ρ2)

(ρ2, ρ̂2)
. (3.13)

We can now use (3.8) and (3.11) to rewrite the second equation as

ddJ1e−2A(J2 · +2Fρ2)δρ2 = 0 (3.14)

where we have defined

Fρ2ω ≡ (ω, ρ2)

(ρ2, ρ̂2)
ρ2 , (3.15)

which is very similar to a projector on ρ2: it takes the component over ρ̂2 and multiplies

by ρ2.

It remains to quotient by symmetries. These are diffeomorphisms and B field gauge

transformations B → B + dξ. One can combine such a ξ and a vector v generating a

diffeomorphism in an element A ∈ T ⊕ T ∗, collectively acting as

ω → ω + d(A · ω) (3.16)
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on any closed form ω. However, A should be chosen in such a way that Φ1 is not affected

by them, since this is the assumption in this section. Hence one should take d(A ·Φ1) = 0.

If one does so, one can show that δρ2 = d(A · ρ2) satisfies the conditions in (3.12).

Putting all together, we have that the moduli for Φ2 should be in

U0
J1

∩ Ker(d) ∩ Ker
(

ddJ1e−2A(J2 · +2Fρ2)
)

{d(A · ρ2) | d(A · Φ1) = 0} . (3.17)

This result is very similar to the description of moduli for heterotic compactifications in [23].

This resemblance is looking more evident when one takes the particular case of a solution

of O5 type; as noted earlier, below (2.18), this case is dual to a type II relative of the

heterotic equations in [19] whose moduli are studied in [23].

The next step would be to include deformations of Φ1. We will not be able to analyze

conclusively the whole system. In section 3.4, we will review what is known about defor-

mations of the condition dΦ1 = 0, the first equation in (3.1). Then, in section 3.5, we will

sketch an approach to the full system.

3.3 The ddJ -lemma

The equation dΦ1 = 0, whose moduli we want to review in section 3.4, implies that the

manifold is generalized complex. If it also satisfies the so-called ddJ− lemma, its moduli

problem simplifies somehow. In this subsection, we review what this lemma means.

We should first have a closer look at the operator dJ ≡ [d,J ] we defined in the previous

section. As we did in section 2.1, we can now look at what this operator reduces to in the

two canonical special cases, namely for a J induced by a complex or by a symplectic

structure.

For J =
(

I 0
0 −It

)

, with I a complex structure, dJ reduces to the operator dc = i(∂̄−∂),

with ∂ the usual Dolbeault operator. In fact, one can define the generalizations of ∂ and ∂̄

for a more general J [9]: for a form φk ∈ Uk
J , decompose dφk in a part in Uk+1

J (and call

it ∂J (φk)) and a part in Uk−1
J (call it ∂̄J (φk)). It is then still true that

dJ = i(∂̄J − ∂J ) . (3.18)

In the symplectic case (J =
( 0 −J−1

J 0

)

, with J the symplectic two-form) the operator

dJ can also be easily computed. We have [d, J∧] = (dJ)∧ = 0; and J−1
x is nothing but the

operator called Λ in symplectic (and, in particular, Kähler) geometry. Notice again that

J−1 is just the inverse of J ; we need no metric to raise the indices. Then dJ is equal to

[d,Λ], which is traditionally called δ and studied in symplectic geometry (for example [24 –

27]; see chapter 5 in [16] for a review). The idea is to define an alternative Hodge theory

based on the antisymmetric form J rather than on the metric.

Notice that dJ is a differential, meaning that it squares to zero; and so are the gener-

alized Dolbeault operator ∂J and its conjugate.

Let us now discuss the “lemma” in the title of this subsection. This is actually a

property that a generalized complex manifold can or cannot have. A generalized complex
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structure J satisfies the generalized ddJ lemma if any form which is d-exact and dJ -closed

is also ddJ -exact:

dJ (dα) = 0 ⇒ dα = ddJ β . (3.19)

From (A.7) below, one can see that this also implies that any form which is dJ -exact and

d-closed is ddJ -exact.

The original lemma says that the property (3.19) is valid on Kähler manifolds.

Gualtieri [18] showed that it is also valid for each of the two generalized complex structures

J± that define together a generalized Kähler structure.

The property can, however, be valid without the manifold being Kähler or generalized

Kähler. For example [28], complex manifolds birational to Kähler manifolds satisfy (3.19).

In the symplectic case, the ddJ -lemma is equivalent to the so-called Lefschetz property, as

reviewed in [16].

3.4 Generalized complex moduli

The deformation problem for the equation

dΦ = 0 (3.20)

has been studied from several points of view [8, 9, 29]. In this subsection we will review

the different approaches. Even if this can only be relevant to the Φ1 in our equations (3.1),

in this subsection we will drop the subscript 1.

As a warm-up, let us derive the Kodaira-Spencer equation from a slightly unusual

perspective. Let us start from a complex structure I with holomorphically trivial canonical

bundle K. This means that there is global holomorphic section Ω of K, dΩ = 0. To deform

this, we can use a tensor µ whose index structure is µi
j̄ . This acts as µ· = µi

j̄(dzj̄∧)ι∂i
,

namely by contracting the upper index and wedging the lower index. This is an infinitesimal

action: its finite counterpart can be defined by the exponential8

Ω0 → Ω = eµ·Ω0 . (3.21)

Any decomposable three-form Ω (namely, a form that can locally be expressed as wedge

of three complex one-forms) defines an almost complex structure I; the integrability of I

is translated into the condition that dΩ be of type (3, 1), or in other words

dΩ = W5 ∧ Ω (3.22)

for some one-form W5. (This strange name is a legacy of early studies of almost hermitian

manifolds [30].) In this situation, the canonical bundle is already topologically trivial,

because a global non-vanishing section Ω exists; if W5 is exact, it can be reabsorbed by

rescaling and the canonical bundle has a holomorphic global section — therefore it is

holomorphically trivial. In the following, we will mostly take W5 = 0.

8The superscript 0 will denote from now on undeformed quantities.
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Now we can decide whether the complex structure I determined by the deformed Ω

is integrable or not, without looking at the Nijenhuis tensor. By the formula e−ABeA =

[B,A] + 1
2 [[B,A], A] + . . . we get

∂(µ · Ω0) +

(

[∂̄, µ·] +
1

2
[[∂, µ·], µ·]

)

Ω0 = 0 . (3.23)

where ∂ is the undeformed holomorphic exterior derivative. Notice that the two terms

belong to U1
J and U3

J respectively; hence they have to vanish separately. (The first term

does not have to vanish if we allow a non-zero W5.) We can now read this in two ways.

One is to note that in the second term, which belongs to U3
J , the operator in parenthesis

acting on Ω0 is algebraic (it contains no derivatives) and that it only contains creators.

Hence we get

[∂̄, µ·] + 1

2
[[∂, µ·], µ·] = 0 (3.24)

which is one possible form of the Kodaira-Spencer equation. We can, alternatively, define

µ′ ≡ µ · Ω0, after which the first term in (3.23) becomes ∂µ′ = 0 and the second term can

be rewritten as

∂̄µ′ +
1

2
∂(µ2)′ = 0 . (3.25)

We can now generalize this. Similarly to (3.22), the condition that a generalized

complex structure J be integrable can be read off the corresponding pure spinor [9]:

dΦ = A · Φ (3.26)

for some A ∈ T ⊕ T ∗, acting as ABΓB — a combination of a one-form and a vector, this

time. Just as we did for W5, we are going to assume that A = 0 in what follows. In exactly

the same way as (3.24), then, one obtains a generalized Kodaira-Spencer

[∂̄J , l·] +
1

2
[[∂J , l·], l·] = 0 (3.27)

where this time l· is the action of an element of Λ2L̄Φ — a wedge of two creators. In

alternative, one can now define l′ ≡ l · Φ and write (3.27) as

∂̄l′ +
1

2
∂(l2)′ = 0 . (3.28)

that generalizes (3.25). Notice that one also obtains the analogue of the first term in (3.23),

∂(l′) = 0 . (3.29)

One can avoid this equation if we allow a non-zero A in (3.26). We will see that we can

remain within the more restrictive dΦ = 0 and satisfy (3.29) automatically if the ddJ

lemma is satisfied.

In the complex structure case, in which Φ = Ω, one can derive the integrability con-

dition in a more usual way by computing the Nijenhuis tensor N(I), and without ever

referring to Ω. N(I) is obtained as the imaginary part of the condition P̄ [Pv, Pw]Lie = 0,
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where P = 1
2(1 − iI) is the holomorphic projector. This condition means that the Lie

bracket of two (1, 0) vectors is still (1, 0): the distribution of (1, 0) is integrable. The anal-

ogous condition for generalized complex structures involves, not surprisingly, elements of

T ⊕ T ∗ instead of vectors, and the Courant bracket on T ⊕ T ∗ instead of the Lie bracket.

One can, however, bypass all this and express the integrability of a generalized complex

structure J as (see for example [31])

[[d,J ·],J ·] = −d . (3.30)

This is not completely surprising, given the definition of the Courant bracket as a derived

bracket:

[A,B]Courant ≡ {{d,A}, B} − {{d,B}, A} . (3.31)

Notice also that the trivector part (namely, the part in Λ3T ∗) of (3.30) is just (referring to

the block decomposition J =
(I P
J −It

)

we already used in (2.8))

[[d, P ], P ] = 0 (3.32)

which means that the upper-right block P of a generalized complex structure J is always a

Poisson bivector ([[d, ·], ·] reduces to the Schouten bracket on multivector fields). This fact

has indeed been found by explicit computation in [32] and later also noticed in [33, 34].

One can now deform J = J 0 + δJ to obtain another form of the Kodaira-Spencer

equation:

[dJ , δJ ·] +
1

2
[d, [δJ ·,J ·]] +

1

2
[[d, δJ ·], δJ ·] = 0 . (3.33)

Even if this looks more complicated than (3.27) or (3.28), it is the form which is most appro-

priate to understanding the deformation of the ddJ -lemma to be discussed in appendix B.

This is because deforming dJ contains δJ rather than the l above.9

The original derivation of the generalized Kodaira-Spencer (formula (5.2) in [9]) is

neither of the two we saw above. It does not use the presence of a pure spinor Φ (just

like our second approach by deforming (3.30)), but it gives the same result as (3.27), once

one translates it in terms of Lie algebroids. The result in [9] is expressed in terms of the

second cohomology H2
L of a Lie algebroid whose underlying bundle is LΦ, the annihilator

bundle for Φ. In the case in which J is holomorphically trivial, which is of interest in

this paper, this cohomology is isomorphic to the cohomology of ∂̄J [9, Section 4.4],[29,

Prop. 4].10 The quadratic term in (3.27) also coincides with the Schouten bracket [l, l]

in [9], just because (3.31) can be extended to elements of L̄Φ with arbitrary degree, as

checked in [29].

9The relation between the two is complicated by the fact that δJ is real, whereas in (3.27) we have

taken l in Λ2L̄, hence complex. Alternatively we could have taken l to be real and hence with a part in

Λ2L̄ and a part in Λ2L, at the price of complicating the exponential expansion in (3.27); this would have

corresponded to transforming J → elJ e−l.
10This fact generalizes the Gerstenhaber-Schack result [35, 36] that the second Hochschild cohomology

of a Calabi-Yau is given by H0(M, Λ2T ) ⊕ H1(M, T ) ⊕ H2(M,O).
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Let us summarize the generalized Kodaira-Spencer approach to deformations of the

condition dΦ = 0. Infinitesimal deformations sit in the second cohomology of the Lie

algebroid associated with L

H2
L , (3.34)

or equivalently in the second cohomology (starting from Φ) of the generalized ∂̄J operator.

There are two problems with the situation so far. The first is equation (3.29), that

up until now we have ignored. For the generalized complex condition alone, one can

actually avoid (3.29) by allowing a non-zero W5 in (3.22) or more generally A in (3.26).

For the stronger condition dΦ = 0, which is the one that appears in (3.1), we have to ask

whether (3.29) modifies (3.34). The second problem is that infinitesimal deformation given

by (3.34) could be obstructed.

Both these issues are solved by assuming that the manifold satisfies the ddJ is satisfied

(reviewed in 3.3). For the first, one can note that [16, Theorem 4.2] tells us that every

de Rham cohomology class can be taken to be both d– and dJ -closed. Hence, the coho-

mology (3.34) parameterizing infinitesimal deformations can be rewritten more concretely

as

H∗(M, C) ∩ U1
J . (3.35)

For the second problem, the presence of possible obstructions, let us try to solve the

equation perturbatively as usual, writing l = l1 + l2 + . . .. The equations at first order are

solved by an element l1 in (3.35). At second order we have

∂l′2 = 0 , ∂(l21)
′ + ∂̄l′2 = 0 . (3.36)

We have that ∂(l21)
′ is ∂-exact, and — by passing to the Lie algebroid (as seen for example

in [29, page 12]) that it is ∂̄-closed. This implies that ∂(l21)
′ = ∂̄∂(σ1) for some σ1. Now

l′2 = −∂σ1 solves (3.36). In a similar way one can proceed by induction. To prove that

deformations are unobstructed would now require proving that the series converges. These

details were given in [29] for the generalized Kähler case; as we just sketched, providing an

order-by-order solution for l only requires the ddJ , and one would expect convergence to

work again with this weaker assumption.

Rather than trying to fill in these details, however, we will now review the Hitchin

functional approach [21, 8], that exhibits the unobstructed moduli space more directly.

First of all we need to remember that a pure spinor Φ is determined by its real part

ρ, as reviewed in section 3.2. If we start from a closed Φ0, deformations of the real part

ρ = ρ + δρ which are small enough will keep ρ stable (since stability is an open condition,

or in other words it is defined by an inequality). Then the condition dΦ = 0 imposes

d(δρ) = 0.

One can then determine ρ̂ = ImΦ via (3.3) and (3.4). A priori this ρ̂ is not necessarily

going to be closed. However, one can vary ρ → ρ + dσ and hope that for some σ the

resulting ρ̂(ρ + dσ) will be also closed.

This is made precise by introducing [21, 8] the functional

S(ρ) =

∫

s(ρ) , (3.37)
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where s(ρ) = −1
2(ρ, ρ̂) as in (3.7). Using (3.8), we see that the extrema of (3.37) under

variations ρ → ρ + d(σ) are given by ρ̂ such that
∫

(dσ, ρ̂) = 0 for any σ, which implies,

integrating by parts, that

dρ̂ = 0 . (3.38)

One can then use the functional (3.37), along with the implicit function theorem, to prove

that a generalized complex manifold with holomorphically trivial canonical bundle (that

is, so that dΦ = 0) has an unobstructed moduli space.11 More specifically, its moduli space

is an open set in Heven or Hodd, depending on the parity of Φ. Notice that this agrees with

the result (3.35) once one takes into account the trivial rescaling of Φ.

The conclusion of this subsection is that deformations of the condition dΦ = 0 alone

are easy: they are given [8] by an open set in the cohomology (3.35).12 In particular, there

are no obstruction to worry about, and there is a natural flat metric on the moduli space.

3.5 Comments about the full system

Let us now come back to (3.1).

In section 3.2, and more specifically in (3.17), we have given a cohomological description

of the moduli given by the pure spinor Φ2, for fixed Φ1.

Then, in section 3.4, we have reviewed what is known about deformations of the first

equation in (3.1) alone, in various degrees of generality — in particular concluding that we

have an unobstructed moduli space of dimension (3.35) when the ddJ1 lemma is satisfied.

We should stress that this moduli space will not be unaffected by the other equations

in (3.1), in particular by the third (that we also rewrite in (3.41) below). In fact, one can

immediately see that some of the moduli in (3.35) will be lifted. We know from (A.4) that

ρ must be in U0
J1

; we also know that ddJ1 preserves Uk
J1

. This implies that

J1 · δ = 0 . (3.39)

This equation will in general lift some of the moduli of Φ1. But it might not be the only

obstruction coming from (3.41), even if we keep Φ2 constant. Even if we assume that the

ddJ1 lemma holds, it will only follow that δ is ddJ1 of something, not necessarily of e−2Aρ̂2

as it has to be.

More generally, one would now like to put these results together and study the full

system and letting both Φ1,2 vary. Even though we do not have a definite result about this

problem, we would like to outline an approach here that might reveal itself useful in the

future.

The idea is the following. One would start from the two decoupled equations in (3.1),

dΦ1 = 0 and (in the notation of section 3.2) dρ2 = 0. The moduli of the first are, as we

11 What is called ddJ lemma in [8] is actually the property that dJHitdτ ⇒ dτ ∈ U2
J ⊕ U−2

J
. One can

show that this property follows from the ddJ lemma in this paper, (3.19).
12As we remarked at the end of section 3.3, a class of manifolds obeying the ddJ lemma is given by

complex manifolds birational to Kähler ones. The moduli space for these is indeed unobstructed, because

it is just isomorphic to a component of the discriminant locus of a Kähler manifold. This conclusion then

is in nice agreement with the nonobstructedness theorem in [8]. These manifolds have been used in [37] to

construct supersymmetric string vacua.
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saw, described by (3.35); the moduli of the second by

U0
J1

∩ Ker(d)

{d(A · ρ2) | d(A · Φ1) = 0} . (3.40)

which is the same as (3.17) but without the ddJ1 part. This is because we have not

considered the third equation in (3.1), that we rewrite here for convenience, again with the

redefinitions above (3.12):

−8ddJ1(e−2Aρ̂2) = δ . (3.41)

This equation is now not necessarily satisfied, after deforming both Φ1 (and hence J1) and

ρ2. However, the cohomology (3.40) is in general infinite-dimensional (as also remarked

in [23]), since we are not quotienting by all exact forms. A natural idea is that one can

vary ρ within this infinite-dimensional space, to find a solution to (3.41).

One possible way one would go about showing this is a variation on the Hitchin func-

tional argument reviewed at the end of section 3.4. Let us assume that the ddJ1 lemma is

valid. The functional to consider would be now13

∫

||Φ−||2(ρ, ρ̂)2 − (ρ, ξ) (3.42)

where ξ is a form such that δ = −8ddJ1ξ; we know such a form exists because of the ddJ1

lemma. Rather than varying within the full (3.40), it makes sense to vary among exact

forms ρ → ρ+dσ, with dσ ∈ U0
J1

. Such a dσ is also dJ1 closed. Because of the ddJ1 lemma,

we can always write such a variation as ddJ1τ for some τ ∈ U0
J1

(again thanks to the fact

that ddJ1 preserves Uk
J1

). A critical point would then occur when

∫

(ddJ1τ, e−2Aρ̂ − ξ) =

∫

(τ,−δ + ddJ1(e−2Aρ̂)) = 0 , ∀τ ∈ U0
J1

(3.43)

where we have used (3.8) and e−2A = (ρ,ρ̂)
||Φ1|| . (3.43) means that ddJ1(e−2Aρ̂) − δ has no

component in U0
J1

, which in turn means that (3.41) is satisfied, since ρ̂ is in U0
J1

.

Now we have shown that (3.41) describes critical points of (3.42) in a particular class

of variations — namely, δρ ∈ {dσ ∈ U0
J1
} = {ddJ1τ such that τ ∈ U0

J1
}. We would now

need to show that the Hessian around such a critical point has no zero modes besides

symmetries (those in the denominator of (3.40). This would mean showing that

ddJ1 JHit
2 ddJ1τ = 0 ⇒ ddJ1τ = d(A · ρ2) . (3.44)

A similar point arose in [8]; this is where the ddJ1 lemma was used (but see footnote 11).

Unfortunately showing (3.44) is made more difficult by the fact that J2 is not integrable

(since Φ2 is not closed). This implies, in particular, that given a form ω in Uk
J2

, dω

has components not only in Uk±1
J2

, but also in Uk±3
J2

. In other words, we do not have a

decomposition d = ∂J2 + ∂̄J2 . We do have a decomposition d = ∂J1 + ∂̄J1 , since J2 is

integrable, but that does not help towards showing (3.44).

13A modification of the Hitchin functional including flux was also considered in [38].
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If this technical point could be shown in some situation, then one could reason para-

phrasing [8] as follows. We are trying to deform a supersymmetric solution, which we

have seen now it can be thought of as a critical point of (3.42). If the Hessian around

this critical point did not have any zero modes, then the critical point would survive small

enough deformations. Zero modes are dangerous because, upon a deformation no matter

how small, they could develop a non-zero first derivative (a “tadpole”) that would destroy

the critical point. The functional (3.42) is bound to have at least the zero modes generated

by the symmetries in the denominator of (3.40). These particular zero modes, however,

cannot be lifted by small deformations. For this reason, if one showed (3.44), one would

conclude that there is actually an unobstructed moduli space. This would be valid for both

deformations of Φ1 and of Φ2, but there is an extra subtlety for the former. One might

worry that assuming the ddJ1 lemma is valid for the undeformed J1 does not mean that

it is still valid once we deform it. Fortunately, at least this point can be shown: the ddJ

lemma is in general an open condition (as we argue in appendix B) hence it is still valid

after small enough deformations.

Its dimension would be given by the deformation space for Φ1, which is given by (3.35),

and by the deformation space for ρ2 = e−2AReΦ2. This is no longer given by (3.40) now,

because we have used up all exact forms to find a critical point for (3.44). All in all,

remembering also (3.39), one would get

(H∗(M, R) ∩ U0
J1

) ⊕
{

δJ1 ∈ H∗(M, C) ∩ (U1
J1

) | δJ1 · δ = 0
}

. (3.45)

This space is unfortunately large — since we have assumed the ddJ1 lemma, its dimension

is equal to dimH∗(M, R) minus deformations obstructed by (3.39). This has at least the

merit of showing the reasonable result that there are fewer moduli than in the case of a

Calabi-Yau without flux.

However, (3.45) is somehow the worst case scenario. We have assumed the ddJ1 lemma

and that (3.44) is true. If these conditions are not satisfied, there can definitely be fewer

moduli than (3.45) would suggest. In general there will be a superpotential in which both

the moduli in (3.12) and the moduli in (3.35) appear, and that can in principle lift both. It

would be interesting to realize this explicitly in connection to studies of effective theories

on manifolds with SU(3) × SU(3) structures [39].

The most popular and easy flux compactification is the one originated in [1, 2] and dual

to the F-theory backgrounds in [3]. All moduli but the overall volume can be lifted by the

flux in this case. This hence provides a prominent counterexample to the pessimistic (3.45),

underlining that it is by no means a general conclusion.

On the other hand, the moduli due to Φ2 alone, given in (3.17) will always be there.

So this is the minimal number of moduli one can obtain for supersymmetric Minkowski

compactifications. Although I do not know how to compute that cohomology in general,

it might be doable in some example; [23] looks encouraging in that respect.

The conclusion of this section is that (up to some assumptions discussed above) the

number of moduli is between the dimensions of (3.17) and (3.45). Up to now we have not

paid any attention, however, to the effect of sources, to which we now turn.
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3.6 Orientifolds and branes

The discussion so far has not taken into account the effect of having orientifolds. In the

compact case, if we want to stay within simple supergravity, sources of negative tension are

necessary, as shown in [40, 41]. Orientifold planes contribute to the source term in (3.1)

with the appropriate sign (in the context of the pure spinor formalism, this was detailed

in [11]), but they also require that the pure spinors and the fields transform appropriately

under the projection that defines the orientifold. In addition to the orientifold planes, there

might or might not appear sources due to branes. We are now going to comment on how

these affect the moduli.

We will start with orientifolds. The transformation laws for the pure spinors have been

listed in [20, Table 4.2], as we mentioned. The moduli will be consequently restricted to live

in some real subspace of the cohomologies we were proposing in the previous subsections.

One can actually see that the orientifold transformation law will imply (3.39) as far as the

orientifold source is concerned:

J1 · δO−planes = 0 . (3.46)

If branes are also present in δ, their contribution will also satisfy J1 · δD−branes = 0; these

conditions essentially mean that the O-planes and the D-branes are generalized complex

submanifolds (a concept defined in [9] and shown to arise from the brane world-volume

action in [42, 12]).

Branes will also potentially give rise to new deformations in addition to the geometrical

ones we have considered so far. As we remarked at the beginning of this section, δ has

been taken so far to be given; deforming the brane sourcese changes δ.14 Infinitesimal

deformations of the generalized complex submanifold condition have been shown in [43] to

be parameterized by a Lie algebroid cohomology on the submanifold. In general, however,

these deformations will mix with the geometrical deformations: it is not guaranteed that

changing δ in (3.41) keeps the equation solvable. We will not consider this problem further.

4. Prospects for finding new vacua

In this section we will consider to what extent the simplification of the equations we showed

in section 2, namely (2.17) or (2.18), might make it easier to find concrete examples.

Right now there exist several examples of Minkowski flux vacua based on non-Calabi-

Yau manifolds, but most of them [1, 44, 45] are dual to Calabi-Yau vacua. A few non-dual

ones are known [11], which have been found in a (commonly used) approximation in which

sources (including orientifold planes) are treated as smeared. A class of vacua also exists [37]

that can be found by using four-dimensional effective supergravity, but which is beyond

the reach of ten-dimensional supergravity.

From this very short list it is clear that finding new classes of examples, as opposed

to isolated ones, would be important. The expression (2.18) should make it easier to find

14This does not mean that any δ is acceptable; if that were so, (3.41) would have no content, and one

would end up with infinitely many moduli. Even if one were to accept configurations with “smeared”

branes, δ is still constrained by having a Dirac-delta Poincaré dual to the orientifold plane.
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such examples. To show why, let us go back to the original form (2.2), which we rewrite as

8d†A,H(e−2AReΦ2) = −F , (4.1)

where the adjoint d†A,H is the adjoint to dH with respect with the “warped inner product”

〈α, β〉 ≡
∫

e3Aα∧∗β. (4.1) might seem to be tailored for using it with Hodge theory. Since

we know that dHF = δ by Bianchi, we would now apply the Hodge decomposition to δ;

it would follow that δ = dH(d†A,HGF ), where G is the Green operator. Then one would

seemingly have solved (4.1) by

e−2AReΦ2 = Gδ . (4.2)

The problem with this is that G depends on the metric, and the metric, in turn, depends on

ReΦ2. Hence (4.2), while true, is not a definition for ReΦ2, but rather a nonlinear equation

that it has to satisfy. The same can be said about (4.1): ReΦ2 secretly also appears in the

definition of †.
Let us now contrast this with the new version of the same equation, in the form (2.18).

We now have at our disposal a simpler version of “Hodge theory”, one that does not lead

to the problem we just described. Namely, after having solved dHΦ− = 0 by choosing our

manifold to be generalized complex (with holomorphically trivial canonical bundle), we

can further restrict ourselves to manifolds on which the ddJ1 lemma is satisfied. As we

commented in section 3.3, we know plenty of such manifolds. Now we will have to find an

orientifold so that its source δ is exact, or such that it becomes exact after adding some

branes to it. (This is not an assumption; we know δ has to be exact anyway, because

dF = δ.) Given that δ is exact, since it also has definite degree under J1· (see (3.39)), it

follows that it is dJ1-exact, and hence dJ1-closed. By the ddJ1 lemma, we get that

δ = ddJ1σ (4.3)

for some σ. This time this solution is genuinely determined by the mathematics, since the

operator dJ1, as opposed to d†A,H , does not depend on the metric, but only on “half of it”,

namely on Φ1.

This is why (2.18) represents progress. Unfortunately, this does not mean that finding

solutions to the supersymmetry system has now become trivial.

One problem is that the σ we have determined in (4.3) via the ddJ1 lemma is not

necessarily worthy of being called ReΦ2. For a form to be the real part of a pure spinor,

it has to be stable, as we reviewed after (3.5)). And even if it is stable, the metric it

defines together with Φ1 might turn out not to be positive definite. Nothing guarantees,

a priori, that σ determined by (4.3) will turn out to have both features. On the bright

side, both these problems (stability and positive definiteness of the metric) are regulated

by inequalities. So maybe one can still use the σ above, for example to perturb a known

solution. However, there still would remain to be solved d(e−AReΦ1) = 0.

All these problems might become milder if we renounce full generality and we look

at a class of examples. Consider for instance O5 solutions with pure spinors of the form

Φ+ = eiJ , Φ− = Ω. The equations in this case specialize to

dΩ = 0 , i∂∂̄(e−2AJ) = −δ , dJ2 = 0 , iΩΩ̄ =
4

3
e2AJ3 , J ∧ Ω = 0 . (4.4)
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The first condition says that the manifold is complex with holomorphically trivial canonical

bundle, K = 0. Then, in this case we have dJ1 = i(∂ − ∂̄) with ∂ the ordinary Dolbeault

differential (as we remarked in section 3.3). Supposing as above that this complex manifold

satisfies the ∂∂̄ lemma, we have δ = i∂∂̄σ for some σ just like in the general case (4.3).

Now one possible idea would be to look for a J0 so that ∂∂̄J0 = 0 and dJ2
0 = 0, and

deform these with the σ obtained above. The condition ∂∂̄J0 = 0 is sometimes called SKT

(strong Kähler with torsion); solutions are not difficult to find, for example by looking for

sigma models with (2, 1) supersymmetry. 15 If one were able to solve dJ2 = 0 at the same

time, one would end up with the last equation in (4.4), which now is analogous to the

Monge-Ampère equation, but for manifolds which are only complex and not also Kähler.

Notice that the “mirror” of this, namely the symplectic case, has been studied in [48, 49].

In perspective, I think one should be able to reduce the supersymmetry problem just to

such a generalization of the Monge-Ampère equation.

Acknowledgments. It is a pleasure to thank G. Cavalcanti, W.–y. Chuang, M. Gual-

tieri, M. Graña, N. Halmagyi, M. Headrick, S. Kachru, P. Koerber, Y. Lin, L. Martucci,

R. Minasian, M. Petrini, M. Schulz, L.–S. Tseng, D. Tsimpis, B. Weinkove, for discussions

and/or correspondence. This work is supported by the DOE under contract DEAC03-

76SF00515 and by the NSF under contract 0244728.

A. Some aspects of generalized complex geometry

Here we will review some aspects of generalized complex geometry that we need in the

main text, some of them well known, some known but never spelled out in the literature.

One can view a differential form as a spinor for the Clifford algebra Cl(6, 6), whose

generators are the gamma matrices ΓA = {ι∂m
, dxm∧} (see also section 2.1). We call a

differential form pure if its annihilator LΦ has dimension 6. Two notable examples of pure

spinors are eiJ (J being a symplectic form) and Ω (a decomposable complex three-form).

The internal product of two pure spinors is defined to be

(A,B) vol ≡
(

A ∧ λ(B)
)

top
, (A.1)

where λ is defined by16

λ(Ck) = (−)[
k
2
]Ck , (A.2)

k being the degree of the form. In dimension 6, (A.1) is antisymmetric. It is then convenient

to define the norm of Φ as (Φ, Φ̄) = −i||Φ||2. For the purposes of N = 1 supersymmetry,

it is also important to fix the volume form vol in (A.1), since that determines the dilaton

φ via the second equation in (2.2). The details of how this is done can be found in [11].

15One case in which one would be able to find solutions is the class of spaces considered in [1, 46, 47, 45],

namely T 2-fibrations over a K3. However, these turn out to be just T-dual to more familiar warped K3×T 2

solutions.
16Our conventions are ∗6e

a1...ak = 1
(6−k)!

ǫak+1...a6

a1...akeak+1...a6 and γ = −iγ456789 .
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One can associate to a pure spinor Φ a generalized complex structure J by demanding

that the i-eigenspace of J be LΦ. Then, given two pure spinors Φ1,2, one calls them

compatible if they

[J1,J2] = 0 (A.3)

and if the metric −IJ1J2 on T ⊕ T ∗ is positive definite. One can see [9] that a pair

of compatible pure spinors determine a positive definite metric (and a B field) on the

manifold.

One can reformulate the condition (A.3) directly in terms of Φ1,2 by asking that

Φ2 ∈ U0
J1

; (A.4)

or in other words, that J1 · Φ2 = 0 (see discussion around (2.9)).

Let us see why (A.4) is equivalent to (A.3). If we have Φ1,2 such that their J1,2

commute, we can apply the construction in section 2.1 and get a diamond as in (2.11).

Then (A.4) is clear from that equation.

Conversely, suppose Φ1,2 are pure, and Φ2 satisfies (A.4). For any l ∈ LΦ2 (so that

l · Φ2 = 0) we have

(J1 l) · Φ2 = [J1·, l·]Φ2 = −l · J1 · Φ2 = 0 . (A.5)

Hence J1 l is still in LΦ2 . Hence J1 sends LΦ2 to itself; a similar argument shows that it also

sends L̄Φ2 to itself. We already know that J1 is diagonalizable on T ⊕ T ∗ and now we also

know that it is block-diagonal on LΦ2 and L̄Φ2 . An eigenvector of a block-diagonal matrix

can always be decomposed as a sum of two eigenvectors, each having only components

along one of the two blocks only. Hence J1 is diagonalizable on LΦ2 and on L̄Φ2: so there

exist li ∈ LΦ2 , i = 1 . . . 6, so that J1li = aili (we also know that the ai are either i or −i).

Together with their conjugates, these form a basis for T ⊕ T ∗. Since the li are in LΦ2, we

also have that J2 li = ili. Hence the li and l̄i are a basis of eigenvalues for both J2 and

J1, which means that they commute, (A.3). This is what we wanted to show.17 (A.4) can

in turn be rephrased as saying that Φ2 does not have any component in U2
J1

or U−2
J1

, or in

other words

(Φ2,ΓMΦ1) = (Φ2,ΓM Φ̄1) = 0 . (A.6)

This also shows that the condition (A.4) can also be read Φ1 ∈ U0
J2

.

Finally, a piece of information that we need in the main text is that from the usual

formula e−ABeA = [B,A] + 1
2 [[B,A], A] + . . . and (3.30) one obtains

e−π/2J ·d eπ/2J · = −eπ/2J ·d e−π/2J · = dJ . (A.7)

One can also check this formula by using that, when J is integrable, one can write d =

∂J + ∂̄J and dJ = i(∂J − ∂̄J ), and by using (2.9).

17Positivity of the metric still needs to be imposed separately. What we have proven is that compatibility

is either (A.3) and positivity, or (A.4) and positivity.
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B. The dd
J lemma is an open condition

Suppose that a generalized complex structure J 0 satisfies the ddJ
0

lemma, and consider

now a small deformation

J = J 0 + δ1J + δ2J + . . . . (B.1)

Suppose we now have a form α which is d-exact and dJ -closed:

α = dβ , dJ α = 0 . (B.2)

What we want to prove is that there exists γ such that

α = dβ = ddJ γ . (B.3)

Since we have expanded J in a power series (B.1), we will also expand α in a series,

α = α0 + α1 + α2 + . . . (and similarly for β = β0 + β1 + β2 + . . .) so that it solves (B.2).

At zero-th order, we know that dJ
0
α0 = dJ

0
dβ0 = 0 implies that dβ0 = ddJ

0
γ0 for

some γ0. At first order, then, (B.2) implies

dJ
0
dβ1 + [d, δ1J ]ddJ

0
γ0 . (B.4)

We want to see if using the ddJ
0

lemma we can find a solution for (B.3), that at first order

reads

α1 = d(dJ
0
γ1 + [d, δ1J ·]γ0) . (B.5)

Now, (3.33) at first order implies, upon taking its anticommutator with d,

{dJ 0
, [d, δ1J ·]} = 0 . (B.6)

This allows us, in the second term of (B.4), to pull ddJ0 in front:

dJ
0
d(β1 − [d, δ1J ·]γ0) = 0 . (B.7)

Using again the ddJ
0

lemma, it follows that d(β1 − [d, δ1J ·]γ0) = ddJ
0
σ1 for some σ1. But

now this means that we can take the solution to (B.5) to be γ1 = σ1.

We could now show how assuming a solution at k-th order implies one at (k + 1)-th,

but to avoid an orgy of sums and abstract expressions we will actually show that a solution

exists at second order, since the latter contains all the essential elements of the former.18

At second order, (B.2) now implies

dJ
0
α2 + [d, δ1J ·]α1 + [d, δ2J ·]α0 = 0 (B.8)

and we want to solve (B.3) expanded at second order:

α2 = d(dJ
0
γ2 + [d, δ1J ·]γ1 + [d, δ2J ·]γ0) . (B.9)

18Another thing we will not show here is that the series actually converges.
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Since we have solved (B.5), we can now rewrite (B.8) as

dJ
0
α2 + [d, δ1J ·]d(dJ

0
γ1 + [d, δ1J ·]γ0) + [d, δ2J ·]ddJ

0
γ0 = 0 ; (B.10)

using now (B.6) again, we can rewrite this as

dJ
0
d(β2− [d, δ1J ·]γ1− [d, δ2J ·]γ0)−

(

[d, δ1J ·][d, δ1J ·]+{[d, δ2J ·], dJ 0}
)

dγ0 = 0 . (B.11)

The term in brackets acting on dγ0 is nothing else than the anticommutator of (3.33) with

d expanded at second order; hence it vanishes. From the ddJ
0

lemma, (B.11) now implies

that d(β2 − [d, δ1J ·]γ1 − [d, δ2J ·]γ0) = ddJ
0
σ2. Looking at (B.9), we see that we can now

solve it by simply taking γ2 = σ2.

References

[1] K. Dasgupta, G. Rajesh and S. Sethi, M-theory, orientifolds and G-flux, JHEP 08 (1999) 023

[hep-th/9908088].

[2] M. Graña and J. Polchinski, Supersymmetric three-form flux perturbations on AdS5, Phys.

Rev. D 63 (2001) 026001 [hep-th/0009211].

[3] K. Becker and M. Becker, M-theory on eight-manifolds, Nucl. Phys. B 477 (1996) 155

[hep-th/9605053].

[4] O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086].

[5] R. Minasian, M. Petrini and A. Zaffaroni, Gravity duals to deformed SYM theories and

generalized complex geometry, JHEP 12 (2006) 055 [hep-th/0606257].

[6] M. Wijnholt, Parameter space of quiver gauge theories, hep-th/0512122.

[7] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1

vacua, JHEP 11 (2005) 020 [hep-th/0505212].

[8] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281

[math.DG/0209099].

[9] M. Gualtieri, Generalized complex geometry, math.DG/0401221.

[10] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.

Rev. D 68 (2003) 046005 [alg-geom/9411018].

[11] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on

twisted tori, JHEP 05 (2007) 031 [hep-th/0609124].

[12] L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1

backgrounds, JHEP 11 (2005) 048 [hep-th/0507099].

[13] L. Martucci, D-branes on general N = 1 backgrounds: superpotentials and D-terms, JHEP 06

(2006) 033 [hep-th/0602129].

[14] P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure

compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244].

[15] P. Koerber and L. Martucci, D-branes on AdS flux compactifications, arXiv:0710.5530.

– 23 –

http://jhep.sissa.it/stdsearch?paper=08%281999%29023
http://arxiv.org/abs/hep-th/9908088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C026001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C026001
http://arxiv.org/abs/hep-th/0009211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C155
http://arxiv.org/abs/hep-th/9605053
http://jhep.sissa.it/stdsearch?paper=05%282005%29033
http://arxiv.org/abs/hep-th/0502086
http://jhep.sissa.it/stdsearch?paper=12%282006%29055
http://arxiv.org/abs/hep-th/0606257
http://arxiv.org/abs/hep-th/0512122
http://jhep.sissa.it/stdsearch?paper=11%282005%29020
http://arxiv.org/abs/hep-th/0505212
http://arxiv.org/abs/math.DG/0209099
http://arxiv.org/abs/math.DG/0401221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://arxiv.org/abs/alg-geom/9411018
http://jhep.sissa.it/stdsearch?paper=05%282007%29031
http://arxiv.org/abs/hep-th/0609124
http://jhep.sissa.it/stdsearch?paper=11%282005%29048
http://arxiv.org/abs/hep-th/0507099
http://jhep.sissa.it/stdsearch?paper=06%282006%29033
http://jhep.sissa.it/stdsearch?paper=06%282006%29033
http://arxiv.org/abs/hep-th/0602129
http://jhep.sissa.it/stdsearch?paper=08%282007%29082
http://arxiv.org/abs/0706.1244
http://arxiv.org/abs/0710.5530


J
H
E
P
0
2
(
2
0
0
8
)
0
1
0

[16] G.R. Cavalcanti, New aspects of the ddc-lemma, math.DG/0501406.

[17] M.L. Michelsohn, Clifford and spinor cohomology of Kähler manifolds, Amer. J. of Math.

102 (1980) 1083.

[18] M. Gualtieri, Generalized geometry and the Hodge decomposition, math.DG/0409093.

[19] A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253.

[20] I. Benmachiche and T.W. Grimm, Generalized N = 1 orientifold compactifications and the

Hitchin functionals, Nucl. Phys. B 748 (2006) 200 [hep-th/0602241].

[21] N.J. Hitchin, The geometry of three-forms in six and seven dimensions, math.DG/0010054.

[22] J.P. Hsu, A. Maloney and A. Tomasiello, Black hole attractors and pure spinors, JHEP 09

(2006) 048 [hep-th/0602142].

[23] M. Becker, L.-S. Tseng and S.-T. Yau, Moduli space of torsional manifolds, Nucl. Phys. B

786 (2007) 119 [hep-th/0612290].

[24] J.L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in Elie Cartan et les meth,
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